Esta Sección de la Liga Iberoamericana de Astronomía tiene como objetivo fundamental: La divulgación de la Ciencia orientada a los Exoplanetas o planetas extrasolares. Vincular y organizar a los Observadores con este interés en particular. La difusión de las nuevas técnicas empleadas por los aficionados para la detección de Exoplanetas. El colectar los reportes de Observadores para futuros proyectos de investigación en colaboración con profesionales.

Entradas etiquetadas como ‘exoplanetas’

Búsqueda de discos de escombros

Cazadores de exoplanetas gigantes: busquen discos de escombros

por Amelia Ortiz · Publicada 16 octubre, 2017 ·
16/10/2017 de JPL / The Astronomical Journal

Esta ilustración de artista muestra un gran exoplaneta haciendo que otros cuerpos más pequeños choquen entre sí en un disco de polvo. Crédito: NASA/JPL-Caltech.

No existe un mapa que muestre todos los miles de millones de exoplanetas que se esconden en nuestra galaxia: se hallan tan lejos y son tan débiles comparados con sus estrellas que es difícil encontrarlos. Ahora los astrónomos que buscan mundos nuevos han determinado una posible indicación de exoplanetas gigantes.

Un nuevo estudio ha descubierto que los exoplanetas gigantes que se encuentran en órbita lejos de sus estrellas es más probable que se encuentren alrededor de estrellas jóvenes que tienen un disco de polvo y escombros que de aquellas sin discos. El estudio se ha centrado en planetas de más de cinco veces la masa de Júpiter. Este estudio es el mayor hasta la fecha de estrellas con discos polvorientos de escombros y es el que ha encontrado mejores indicios de que los planetas gigantes son los responsables de mantener ese material bajo control.

“Nuestra investigación es importante para cómo las misiones futuras planificarán que estrellas observar”, explica Tiffany Meshkat, (IPAC/Caltech). “Muchos de los planetas que han sido encontrados por imagen directa han sido sistemas que tenían discos de escombros y ahora sabemos que el polvo podría ser un indicador de mundos por descubrir”.

La investigación no aclara de forma directa por qué los exoplanetas gigantes provocan la formación de discos de escombros. Los autores del estudio sugieren que la gravedad masiva de los planetas gigantes hace que los cuerpos pequeños llamados planetesimales choquen violentamente en lugar de originar planetas y permanezcan en órbita formando parte del disco.

[Fuente]

Anuncios

Los rayos X son reveladores

Los rayos X revelan el temperamento de posibles estrellas con planetas

por Amelia Ortiz · Publicada 26 septiembre, 2017 ·

26/9/2017 de Chandra / Monthly Notices of the Royal Astronomical Society

Esta ilustración de artista muestra una estrella relativamente tranquila, similar al Sol, con un planeta en órbita a su alrededor. La gran zona oscura es un “agujero de la corona” un fenómeno asociado con niveles bajos de la actividad magnética. El recuadro muestra los datos de Chandra de uno de los objetos observados, una estrella de 2 mil millones de años de edad llamada GJ 176, situada a 30 años-luz de la Tierra.

Un nuevo estudio, basado en datos tomados por el observatorio de rayos X Chandra de NASA y el XMM-Newton de ESA, sugiere que los rayos X emitidos por la estrella de un planeta proporcionan pistas fundamentales para decidir lo habitable que podría ser un sistema estelar. Un equipo de investigadores observó 24 estrellas parecidas al Sol, cada una de por lo menos 1000 millones de años de edad, y cómo cambiaba con el tiempo su brillo en rayos X.

Dado que los rayos X reflejan la actividad magnética, las observaciones en rayos X pueden dar información a los astrónomos sobre el ambiente de alta energía alrededor de la estrella. En el nuevo estudio quedó manifiesto que las estrellas como el Sol y sus parientes menos masivas se calman sorprendentemente rápido después de una juventud convulsa.

Para conocer lo rápido que cambian los niveles de actividad magnética estelar con el paso del tiempo, los astrónomos necesitan determinar con precisión las edades de muchas estrellas diferentes. Esta es una tarea difícil, pero en este caso se utilizaron estimaciones nuevas precisas recientemente obtenidas a partir de estudios sobre cómo pulsan las estrellas en datos de las misiones Kepler de NASA y CoRoT de ESA. Dichas estimaciones fueron utilizadas para la mayoría de las 24 estrellas estudiadas en este caso.

Los astrónomos han observado que la mayoría de las estrellas son muy activas magnéticamente cuando son jóvenes, ya que las estrellas giran rápidamente. A medida que la estrella que rota pierde energía con el paso del tiempo, el giro se hace más lento y el nivel de actividad magnética, junto con la emisión de rayos X asociada, cae.

[Fuente]

Cielos con óxido de titanio

Un mundo infernal con cielos de titanio

por Amelia Ortiz · Publicada 14 septiembre, 2017 ·
14/9/2017 de ESO / Nature

Ilustración que muestra al exoplaneta WASP-19b, en cuya atmósfera los astrónomos detectaron óxido de titanio por primera vez. En cantidades lo suficientemente grandes, el óxido de titanio puede impedir que el calor entre o salga de una atmósfera, produciendo una inversión térmica: la temperatura es más alta en la atmósfera superior y más baja en la inferior, lo contrario de lo habitual. Crédito: ESO/M. Kornmesser.

Utilizando el Very Large Telescope de ESO, un equipo de astrónomos ha detectado, por primera vez, óxido de titanio en la atmósfera de un exoplaneta. Este descubrimiento alrededor del planeta WASP-19b, de tipo júpiter caliente, ha sido posible gracias a las capacidades del instrumento FORS2 y ha proporcionado información sobre la composición química y la estructura de temperatura y presión de la atmósfera de este mundo insólito y muy caliente.

Un equipo de astrónomos, dirigido por Elyar Sedaghati (un miembro de ESO recién graduado en la Universidad Técnica de Berlín), ha examinado, con un nivel de detalle sin precedentes, la atmósfera del exoplaneta WASP-19b. Este extraordinario planeta tiene aproximadamente la misma masa que Júpiter, pero está tan cerca de su estrella que completa una órbita en sólo 19 horas y se estima que su atmósfera tiene una temperatura de unos 2.000 grados centígrados.

Cuando WASP-19b pasa por delante de su estrella, parte de la luz de la estrella pasa a través de la atmósfera del planeta y deja huellas sutiles en la luz que finalmente llega a la Tierra. Utilizando el instrumento FORS2 del Very Large Telescope, el equipo fue capaz de analizar esta luz y deducir que la atmósfera contenía pequeñas cantidades de óxido de titanio, agua y trazas de sodio, junto con una niebla global que produce una fuerte dispersión dela luz.

Esta nueva información sobre la presencia de óxidos metálicos como el óxido de titanio y otras sustancias permitirá modelar mejor las atmósferas de los exoplanetas. Mirando hacia el futuro, una vez que los astrónomos puedan observar las atmósferas de planetas posiblemente habitables, los modelos mejorados les darán una idea más completa de cómo interpretar esas observaciones.

[Fuente]

Exoplanetas en formación

Astrónomos observan por primera vez la formación de planetas

por Amelia Ortiz · Publicada 17 mayo, 2017 ·
17/5/2017 de University of Michigan / Nature Astronomy


El sistema planetario observado en este estudio muestra un aspecto similar al de esta imagen de ALMA del disco de formación de planetas alrededor de un joven estrella de tipo solar. El recuadro (parte superior derecha) hace un zoom sobre el hueco más cercano a la estrella, que está a la misma distancia a la que se encuentra la Tierra del Sol, lo que sugiere que una versión infantil de nuestro planeta podría estar surgiendo del polvo y el gas. Las características adicionales concéntricas claras y oscuras, representan a otras regiones de formación de planetas en regiones del disco más alejadas. Crédito: S. Andrews (Harvard-Smithsonian CfA), ALMA (ESO/NAOJ/NRAO).

Observar la formación de un planeta no es fácil.  Los planetas se forman en el plano medio de discos de partículas de gas y de polvo que rodean estrellas jóvenes y hasta ahora, los astrónomos no habían podido observar este plano medio debido a que los gases en el disco son demasiado opacos.

Por primera vez, utilizando los datos de ALMA, el telescopio internacional localizado en Chile, un grupo de astrónomos de la Universidad de Michigan han podido observar la formación de planetas, registrando la temperatura y cantidad de gas presente en las regiones más prolíficas de  ‘producción’ de planetas.“Previamente, hemos observado discos en el proceso de elaboración de planetas, pero nuestras observaciones sólo arañaban la superficie”, dijo Edwin Bergin. Ahora, Bergin y su equipo, que incluye al becario postdoctoral Ke Zhang, desarrollaron un método que permite asomarse a ese plano medio, en este caso, un disco a unos 180 años luz de distancia con un sol alrededor de 0,8 veces la masa de nuestro Sol.

Para observar la temperatura y otras condiciones del nacimiento de un planeta, los astrónomos utilizaron hidrógeno molecular, la molécula más abundante en una región donde se forman planetas o estrellas. Debido a que el hidrógeno molecular no se puede detectar en las temperaturas frías asociadas con los nacimientos de planetas, los astrónomos se centraron en una molécula diferente que existe junto al hidrógeno molecular, siendo utilizada como un proxy para el hidrógeno molecular. El equipo utilizó una forma rara de monóxido de carbono como esta ‘molécula trazadora’.

Basados en la distribución de este monóxido de carbono, los astrónomos pudieron calcular la cantidad de masa disponible en el plano medio de una formación planetaria. Usando una forma diferente de monóxido de carbono, los investigadores también midieron la temperatura de la región sobre la base de cuán brillantemente la molécula brillaba. Otra conclusión importante de este trabajo es la primera medición directa de lo que se llama la línea de nieve de monóxido de carbono. Esta línea de nieve es el radio en el que el monóxido de carbono se congela en el plano medio. Más allá de este radio, el calor del sol ya no puede mantener el monóxido de carbono en forma de vapor en el plano medio y se congela como hielo sobre la superficie de los granos de polvo.

[Fuente Noticia]

Por observación directa

Un nuevo instrumento analiza la luz de planetas en órbita alrededor de otras estrellas
11/11/2016 de Princeton University

Researchers led by Princeton scientists successfully operated a new instrument, the CHARIS spectrograph, which allows them to make detailed observations of planets orbiting distant stars. Above, a plot of data from CHARIS shows planets located around a star in the planetary system HR8799. (Images courtesy of N. Jeremy Kasdin and the research team)

Una de las primeras imágenes tomadas por el instrumento CHARIS, que muestra los planetas situados en el sistema planetario de la estrella HR8799. Imagen cortesía de N. Jeremy Kasdin y del equipo de investigación.

Un equipo de científicos e ingenieros dirigido por investigadores de Princeton ha anunciado su éxito en las pruebas de funcionamiento de un nuevo instrumento instalado en el telescopio Subaru en Hawái que permitirá a los astrónomos realizar observaciones directas de planetas en órbita alrededor de estrellas cercanas.

El instrumento, llamado CHARIS, permite a los astrónomos aislar la luz que reflejan planetas mayores que Júpiter y luego analizarla para determinar detalles acerca del planeta como su tamaño, edad y componentes de la atmósfera. La observación de “primera luz” ha sido la primera prueba de campo del instrumento en el telescopio que demuestra que funciona correctamente.

Otros proyectos recientes han demostrado su capacidad para captar luz reflejada de un planeta y separarla de la luz que brilla directamente desde su estrella progenitora (como SPHERES en el VLT de ESO). Estos esfuerzos permiten a los científicos examinar la luz y determinar la composición química de la atmósfera del planeta del mismo modo en que los químicos utilizan el espectro de la luz (los colores de la luz) para analizar la composición de un material en el laboratorio.   CHARIS (Coronagraphic High Angular Resolution Imaging Spectrograph)  es parte de estos esfuerzos. Actualmente es el único espectrógrafo dedicado a la investigación de exoplanetas en un telescopio de 8 metros en el hemisferio norte.

“Probamos CHARIS con Neptuno, pero el planeta entero ni siquiera cabe dentro de nuestro detector”, explica Tyler Groff (NASA). Sin embargo, el campo de visión del espectrógrafo es tan detallado que los investigadores pudieron realizar algunas observaciones interesantes de nubes flotando por la superficie del planeta.

[Noticia completa]

Actualizado ( Viernes, 11 de Noviembre de 2016 10:14 )  http://observatori.uv.es/index.php?option=com_content&view=article&id=7943%3Aun-nuevo-instrumento-analiza-la-luz-de-planetas-en-orbita-alrededor-de-otras-estrellas&catid=52%3Anoticosmos&Itemid=74&lang=es

Próxima b, un planeta con océano?

Proxima b, ¿un exoplaneta cubierto por un océano? PDF Imprimir E-mail
7/10/2016 de CNRS / The Astrophysical Journal Letters

Comparación entre los dos casos extremos obtenidos para Proxima b con la Tierra. Este esquema muestra la estructura interna de cada planeta. De izquierda a derecha: Proxima b con el radio más pequeño posible según el modelo teórico (65 % de núcleo metálico rodeado por un manto rocoso, separado en dos fases), la Tierra (igual pero con un 32.5 % de núcleo) y Proxima b con el radio más grande permitido (50% de manto de roca rodeado por una capa de agua en forma sólida y líquida).

Comparación entre los dos casos extremos obtenidos para Proxima b con la Tierra. Este esquema muestra la estructura interna de cada planeta. De izquierda a derecha: Proxima b con el radio más pequeño posible según el modelo teórico (65 % de núcleo metálico rodeado por un manto rocoso, separado en dos fases), la Tierra (igual pero con un 32.5 % de núcleo) y Proxima b con el radio más grande permitido (50% de manto de roca rodeado por una capa de agua en forma sólida y líquida). Crédito: Bastien Brugger et al.
Un exoplaneta rocoso de masa similar a la de la Tierra ha sido recientemente detectado alrededor de Proxima Centauri, la estrella más cercana a nuestro Sol. Este planeta, llamado Proxima b, se encuentra en una órbita que le permite mantener agua líquida en su superficie, planteando así preguntas acerca de su habitabilidad. Ahora un equipo internacional de investigadores ha estudiado si sus dimensiones y las propiedades de la superficie favorecen la habitabilidad. Según ellos, este planeta podría ser del tipo “mundo de agua”, con un océano global recubriendo toda su superficie y agua similar a la de algunas de las lunas heladas de Júpiter o Saturno. O la composición de Proxima b podría ser parecida a la de Mercurio, con un núcleo de metal que constituiría dos tercios de la masa del planeta.

Como no es posible conocer el radio del planeta por el método habitual del tránsito, los investigadores utilizaron modelos en los que usaron diferentes composiciones posibles del planeta, centrándose en el caso de planetas densos y sólidos con un núcleo metálico y un manto rocoso como los planetas terrestres del Sistema Solar, permitiendo al mismo tiempo la presencia de una gran masa de agua.

Los resultados muestran que son posibles dos casos extremos. Por un lado, si tiene el radio mínimo estimado (5990 km) podría ser un planeta muy parecido a Mercurio, con un núcleo metálico sólido, y albergar una cantidad de agua que no exceda el 0.05% de la masa del planeta. Por el contrario, si su radio es el máximo calculado (8920 km) se compondría de un 50% de rocas rodeadas por un 50% de agua. En este caso, Proxima b estaría cubierto por un solo océano líquido de 200 kilómetros de profundidad. La presión sería tan fuerte que el agua líquida se convertiría hielo a alta presión antes de llegar a la frontera con el manto, a 3100 km de profundidad.

En estos casos extremos, una delgada atmósfera de gas podría cubrir el planeta, como en la Tierra, por lo que Proxima b sería potencialmente habitable.

[Noticia completa]

Actualizado ( Viernes, 07 de Octubre de 2016 10:04 )   http://observatori.uv.es/index.php?option=com_content&view=article&id=7846%3Aproxima-b-iun-exoplaneta-cubierto-por-un-oceano&catid=52%3Anoticosmos&Itemid=74&lang=es

Planeta por pulsaciones

Encuentran un planeta por pulsaciones PDF Imprimir E-mail
5/10/2016 de AAS NOVA / The Astrophysical Journal

An artist’s illustration of an exoplanet orbiting a hot star. Few planets have been found to orbit hot main-sequence A stars, but a recent discovery illustrates a new way to find such planets orbiting further out in the stars’ habitable zones. [NASA, ESA, and G. Bacon (STScI)]

Ilustración de artista de un exoplaneta en órbita alrededor de una estrella caliente. Se han encontrado muy pocos planetas en órbita alrededor de estrellas calientes de tipo A de la secuencia principal, pero un descubrimiento reciente ilustra un nuevo modo de descubrirlos en órbita en las zonas habitables de las estrellas. Crédito: NASA, ESA, y G. Bacon (STScI).

Buscar planetas alrededor de estrellas muy calientes es mucho más difícil que mirar alrededor de estrellas frías. Por esta razón, el descubrimiento reciente de un planeta alrededor de una estrella de tipo A de la secuencia principal es un hallazgo importante, tanto por su posición única cerca de la zona de habitabilidad de la estrella como por el modo en que el planeta fue descubierto.

En las últimas tres décadas hemos encontrado miles de exoplanetas, pero la mayoría han sido hallados alrededor de estrellas frías (como enanas marrones tipo M) o estrellas moderadas (como estrellas G similares a nuestro Sol). Muy pocos de estos planetas se han descubierto en órbita alrededor de estrellas calientes; de hecho, sólo hemos encontrado unos 20 planetas en órbita alrededor de estrellas de tipo A de la secuencia principal. Ello se debe principalmente a que las técnicas de detección empleadas normalmente (tránsitos y velocidades radiales) son poco efectivas en estos casos.

Las estrellas de tipo A son estrellas cuyo brillo varía periódicamente, a modo de pulsaciones. Estas pulsaciones hacen difícil realizar medidas de tránsitos y velocidades radiales pero pueden, en principio, utilizarse para detectar planetas de un modo diferente. Un equipo de científicos, dirigido por Simon Murphy (University of Sydney, Australia y Aarhus University, Dinamarca) ha detectado el primer planeta en órbita alrededor de una estrella de tipo A a partir de la cadencia de los pulsos de la estrella.

Murphy y sus colaboradores examinaron el periodo de pulsación de la estrella KIC 7917485 a lo largo de cuatro años de datos de la misión Kepler. Descubrieron que las pulsaciones, que se producen de forma periódica predecible, sufren un ligero retraso en su momento de llegada. Pero los propios retrasos mostraban cierta periodicidad, indicando que son producidos por otro objeto que se encuentra en órbita a su alrededor, cuya atracción gravitatoria modula los pulsos de la estrella. Creando un modelo de la curva de luz de la estrella, los investigadores concluyen que el compañero tiene unas 12 veces la masa de Júpiter y completa una órbita cada 840 días. Este periodo sugiere que el planeta se encuentra situado en la zona habitable de la estrella, siendo éste el primer planeta encontrado cerca de la zona habitable de una estrella de tipo A.

[Noticia completa]

Actualizado ( Miércoles, 05 de Octubre de 2016 09:18 )  http://observatori.uv.es/index.php?option=com_content&view=article&id=7834%3Aencuentran-un-planeta-por-pulsaciones&catid=52%3Anoticosmos&Itemid=74&lang=es